Genetically Modified Foods: Harmful or Helpful?

11 years ago | Posted in: Articles, Foodie, Health, Nature, science, Technology, World | 4329 Views

What are genetically-modified foods?

The term GM foods or GMOs (genetically-modified organisms) is most commonly used to refer to crop plants created for human or animal consumption using the latest molecular biology techniques. These plants have been modified in the laboratory to enhance desired traits such as increased resistance to herbicides or improved nutritional content.Genetic engineering, can create plants with the exact desired trait very rapidly and with great accuracy. For example, plant geneticists can isolate a gene responsible for drought tolerance and insert that gene into a different plant. The new genetically-modified plant will gain drought tolerance as well. Not only can genes be transferred from one plant to another, but genes from non-plant organisms also can be used.

Traditionally, crop breeders used natural mutations,cross breeding, and selection to improve varieties. For example, most crop plants have been enhanced by breeding or better quality, higher yields, or pest resistance. How-ever, there are three major drawbacks to conventional cross breeding. First, thousands of genes are shuffled when a cross is made. Therefore, adding a single new trait to a plant variety without affecting all the other traits has been difficult. Second, it has been difficult or impossible to precisely control the expression of a trait. For example,altering a seed protein to be expressed in the roots would not be practicable by conventional breeding methods. Third, genes for a desired trait may be lacking in the gene pool of the crop species. For instance, no soybean variety had resistance to glyphosate herbicide until Roundup ReadyTM soybeans were introduced.

Genetic engineering offers the chance to overcome all of these shortcomings of traditional crop improvement. Because single genes can now be added to a variety, traits can be manipulated much more precisely. Plant breeders are gaining the ability to control exactly when and where a gene is expressed and the amount of the gene product. Even more important has been the ability to expand the gene better nutritional content, better shelf life, or has fewer detrimental compounds such as allergens. Other future GM crops will have special traits of interest to food processors or industrial users. New speciality oils or proteins, biode-gradable plastics, pharmaceuticals, and edible vaccines are all being developed.

What are some of the advantages of GM foods?

The world population has topped 6 billion people and is predicted to double in the next 50 years. Ensuring an adequate food supply for this booming population is going to be a major challenge in the years to come. In the developing world, 840 million people are chronically undernourished, surviving on fewer than 8000 kJ/day (2000 Kcal/day). Approximately 1.3 billion people are living on less than US$1/day and do not have secure access to food. Many of these are also rural farmers in developing countries, depending entirely on small-scale agriculture for their own subsistence and to make their living. They generally cannot afford to irrigate their crops or purchase herbicides or pesticides, leading to a vicious circle of poor crop growth, falling yields and pest susceptibility. In addition, the world’s population is predicted to double over the next 40 years, with over 95% of individuals being born in developing countries. It is estimated that to meet these increased demands, food production must increase by at least 40% in the face of decreasing fertile lands and water resources. GM plant technologies are one of a number of different approaches that are being developed to combat these problems. Specifically, studies are under way to genetically modify plants to increase crop yields, or to directly improve nutritional content.GM foods promise to meet this need in a number of ways:

Pest resistance

Crop losses from insect pests can be staggering, resulting in devastating financial loss for farmers and starvation in developing countries. Farmers typically use many tons of chemical pesticides annually. Consumers do not wish to eat food that has been treated with pesticides because of potential health hazards, and run-off of agricultural wastes from excessive use of pesticides and fertilizers can poison the water supply and cause harm to the environment. Growing GM foods such as B.t. corn can help eliminate the application of chemical pesticides and reduce the cost of bringing a crop to market.

Herbicide tolerance

For some crops, it is not cost-effective to remove weeds by physical means such as tilling, so farmers will often spray large quantities of different herbicides (weed-killer) to destroy weeds, a time-consuming and expensive process, that requires care so that the herbicide doesn’t harm the crop plant or the environment. Crop plants genetically-engineered to be resistant to one very powerful herbicide could help prevent environmental damage by reducing the amount of herbicides needed. For example, Monsanto has created a strain of soybeans genetically modified to be not affected by their herbicide product Roundup ®. A farmer grows these soybeans which then only require one application of weed-killer instead of multiple applications, reducing production cost and limiting the dangers of agricultural waste run-off.

Disease resistance

There are many viruses, fungi and bacteria that cause plant diseases. Plant biologists are working to create plants with genetically-engineered resistance to these diseases.Papaya has been genetically modified to resist the ringspot virus. ‘SunUp’ is a transgenic red-fleshed Sunset cultivar that is homozygous for the coat protein gene of PRV; ‘Rainbow’ is a yellow-fleshed F1 hybrid developed by crossing ‘SunUp’ and nontransgenic yellow-fleshed ‘Kapoho’.The New York Times stated that “in the early 1990s, Hawaii’s papaya industry was facing disaster because of the deadly papaya ringspot virus. Its single-handed savior was a breed engineered to be resistant to the virus. Without it, the state’s papaya industry would have collapsed. Today, 80% of Hawaiian papaya is genetically engineered, and there is still no conventional or organic method to control ringspot virus.”

Cold tolerance

Unexpected frost can destroy sensitive seedlings. An antifreeze gene from cold water fish has been introduced into plants such as tobacco and potato. With this antifreeze gene, these plants are able to tolerate cold temperatures that normally would kill unmodified seedlings.

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC365784/)

Drought tolerance/salinity tolerance

As the world population grows and more land is utilized for housing instead of food production, farmers will need to grow crops in locations previously unsuited for plant cultivation. Creating plants that can withstand long periods of drought or high salt content in soil and groundwater will help people to grow crops in formerly inhospitable places.

Nutrition

Malnutrition is common in third world countries where impoverished peoples rely on a single crop such as rice for the main staple of their diet. However, rice does not contain adequate amounts of all necessary nutrients to prevent malnutrition. If rice could be genetically engineered to contain additional vitamins and minerals, nutrient deficiencies could be alleviated. For example, blindness due to vitamin A deficiency is a common problem in third world countries. Researchers at the Swiss Federal Institute of Technology Institute for Plant Sciences have created a strain of “golden” rice containing an unusually high content of beta-carotene (vitamin A) Since this rice was funded by the Rockefeller Foundation, a non-profit organization, the Institute hopes to offer the golden rice seed free to any third world country that requests it. Plans were underway to develop a golden rice that also has increased iron content.

Pharmaceuticals

Medicines and vaccines often are costly to produce and sometimes require special storage conditions not readily available in third world countries. Researchers are working to develop edible vaccines in tomatoes and potatoes. These vaccines will be much easier to ship, store and administer than traditional injectable vaccines.

Phytoremediation (a process of decontaminating soil or water by using plants and trees to absorb or break down pollutants.)

Not all GM plants are grown as crops. Soil and groundwater pollution continues to be a problem in all parts of the world. Plants such as poplar trees have been genetically engineered to clean up heavy metal pollution from contaminated soil.

Which crops are involved?

Adzuki bean, Alfalfa ,Apple, Apricot, Aubergine, Avocado, Banana, Barley, Bean, Blueberry, Broad bean, Broccoli, Cabbage, Carrot, Cassava, Cauliflower, Cherry, Chestnut,Chick peas, Chicory, Citrus fruits, Cocoa, Coconut, Coffee, Common Pea, Cotton, Cucumber, Date plum, Eucalyptus, Flaxseed, Garlic, Grape vine, Grapefruit, Hops, Kaki, Kiwi, Leek, Lentil, Lettuce, Linseed, Lucerne, Lupin, Maize, Mango, Manioc, Marrow, Melon, Millet, Muskmelon, Mustard , Oat, Okra, Olive, Onion, Onion plants, Orange, Papaya, Peanut, Pear, Pepper, Peppermint, Pigeon pea, Pineapple, Plum, Potato, Pumkin, Radicchio, Rapeseed, Raspberry, Rice, Safflower, Soybean, Strawberry, Strawberry, Sugar beet, Sugar cane, Sunflower, Sweet chestnut, Sweet potato, Taro, Tobacco, Tomato, Triticale, Walnut, Water melon, Wheat, White maize & Zucchini.

In 2000, 68% of all GM crops were grown by U.S. farmers. In comparison, Argentina, Canada and China produced only 23%, 7% and 1%, respectively. Other countries that grew commercial GM crops in 2000 are Australia, Bulgaria, France, Germany, Mexico, Romania, South Africa, Spain, and Uruguay.

Soybeans and corn are the top two most widely grown crops (82% of all GM crops harvested in 2000), with cotton, rapeseed (or canola) and potatoes trailing behind. 74% of these GM crops were modified for herbicide tolerance, 19% were modified for insect pest resistance, and 7% were modified for both herbicide tolerance and pest tolerance. Globally, acreage of GM crops has increased 25-fold in just 5 years, from approximately 4.3 million acres in 1996 to 109 million acres in 2000 – almost twice the area of the United Kingdom. Approximately 99 million acres were devoted to GM crops in the U.S. and Argentina alone.

In the U.S., approximately 54% of all soybeans cultivated in 2000 were genetically-modified, up from 42% in 1998 and only 7% in 1996. In 2000, genetically-modified cotton varieties accounted for 61% of the total cotton crop, up from 42% in 1998, and 15% in 1996. GM corn and also experienced a similar but less dramatic increase. Corn production increased to 25% of all corn grown in 2000, about the same as 1998 (26%), but up from 1.5% in 1996. As anticipated, pesticide and herbicide use on these GM varieties was slashed and, for the most part, yields were increased

Risks of GM Crops

Environmental activists, religious organizations, public interest groups, professional associations and other scientists and government officials have all raised concerns about GM foods, and criticized agribusiness for pursuing profit without concern for potential hazards, and the government for failing to exercise adequate regulatory oversight.

Environmental hazards

  • Unintended harm to other organisms Last year a laboratory study was published in Nature showing that pollen from B.t. corn caused high mortality rates in monarch butterfly caterpillars. Monarch caterpillars consume milkweed plants, not corn, but the fear is that if pollen from B.t. corn is blown by the wind onto milkweed plants in neighbouring fields, the caterpillars could eat the pollen and perish. Although the Nature study was not conducted under natural field conditions, the results seemed to support this viewpoint. Unfortunately, B.t. toxins kill many species of insect larvae indiscriminately; it is not possible to design a B.t. toxin that would only kill crop-damaging pests and remain harmless to all other insects. This study is being re-examined by the USDA, the U.S. Environmental Protection Agency (EPA) and other non-government research groups, and preliminary data from new studies suggests that the original study may have been flawed. This topic is the subject of acrimonious debate, and both sides of the argument are defending their data vigorously. Currently, there is no agreement about the results of these studies, and the potential risk of harm to non-target organisms will need to be evaluated further.

  • Reduced effectiveness of pesticides Just as some populations of mosquitoes developed resistance to the now-banned pesticide DDT, many people are concerned that insects will become resistant to B.t. or other crops that have been genetically-modified to produce their own pesticides.

  • Gene transfer to non-target species Another concern is that crop plants engineered for herbicide tolerance and weeds will cross-breed, resulting in the transfer of the herbicide resistance genes from the crops into the weeds. These “superweeds” would then be herbicide tolerant as well. Other introduced genes may cross over into non-modified crops planted next to GM crops. The possibility of interbreeding is shown by the defence of farmers against lawsuits filed by Monsanto. The company has filed patent infringement lawsuits against farmers who may have harvested GM crops. Monsanto claims that the farmers obtained Monsanto-licensed GM seeds from an unknown source and did not pay royalties to Monsanto. The farmers claim that their unmodified crops were cross-pollinated from someone else’s GM crops planted a field or two away. More investigation is needed to resolve this issue.

There are several possible solutions to the three problems mentioned above. Genes are exchanged between plants via pollen. Two ways to ensure that non-target species will not receive introduced genes from GM plants are to create GM plants that are male sterile (do not produce pollen) or to modify the GM plant so that the pollen does not contain the introduced gene. Cross-pollination would not occur, and if harmless insects such as monarch caterpillars were to eat pollen from GM plants, the caterpillars would survive.

Another possible solution is to create buffer zones around fields of GM crops,. For example, non-GM corn would be planted to surround a field of B.t. GM corn, and the non-GM corn would not be harvested. Beneficial or harmless insects would have a refuge in the non-GM corn, and insect pests could be allowed to destroy the non-GM corn and would not develop resistance to B.t. pesticides. Gene transfer to weeds and other crops would not occur because the wind-blown pollen would not travel beyond the buffer zone. Estimates of the necessary width of buffer zones range from 6 meters to 30 meters or more This planting method may not be feasible if too much acreage is required for the buffer zones.

Human health risks

  • Allergenicity Many children in the US and Europe have developed life-threatening allergies to peanuts and other foods. There is a possibility that introducing a gene into a plant may create a new allergen or cause an allergic reaction in susceptible individuals. A proposal to incorporate a gene from Brazil nuts into soybeans was abandoned because of the fear of causing unexpected allergic reactions. Extensive testing of GM foods may be required to avoid the possibility of harm to consumers with food allergies. Labelling of GM foods and food products will have to be done.

  • Unknown effects on human health There is a growing concern that introducing foreign genes into food plants may have an unexpected and negative impact on human health. A recent article published in Lancet examined the effects of GM potatoes on the digestive tract in rats. This study claimed that there were appreciable differences in the intestines of rats fed GM potatoes and rats fed unmodified potatoes. Yet critics say that this paper, like the monarch butterfly data, is flawed and does not hold up to scientific scrutiny. Moreover, the gene introduced into the potatoes was a snowdrop flower lectin, a substance known to be toxic to mammals. The scientists who created this variety of potato chose to use the lectin gene simply to test the methodology, and these potatoes were never intended for human or animal consumption.

On the whole, with the exception of possible allergenicity, scientists believe that GM foods do not present a risk to human health.

Economic concerns

Bringing a GM food to market is a lengthy and costly process, and of course agri-biotech companies wish to ensure a profitable return on their investment. Many new plant genetic engineering technologies and GM plants have been patented, and patent infringement is a big concern of agribusiness. Yet consumer advocates are worried that patenting these new plant varieties will raise the price of seeds so high that small farmers and third world countries will not be able to afford seeds for GM crops, thus widening the gap between the wealthy and the poor. It is hoped that in a humanitarian gesture, more companies and non-profits will follow the lead of the Rockefeller Foundation and offer their products at reduced cost to impoverished nations.

Patent enforcement may also be difficult, as the contention of the farmers that they involuntarily grew Monsanto-engineered strains when their crops were cross-pollinated shows. One way to combat possible patent infringement is to introduce a “suicide gene” into GM plants. These plants would be viable for only one growing season and would produce sterile seeds that do not germinate. Farmers would need to buy a fresh supply of seeds each year. However, this would be financially disastrous for farmers in third world countries who cannot afford to buy seed each year and traditionally set aside a portion of their harvest to plant in the next growing season. In an open letter to the public, Monsanto has pledged to abandon all research using this suicide gene technology

How are GM foods regulated and what is the government’s role in this process?

Governments around the world are hard at work to establish a regulatory process to monitor the effects of and approve new varieties of GM plants. Yet depending on the political, social and economic climate within a region or country, different governments are responding in different ways.

In Japan, the Ministry of Health and Welfare has announced that health testing of GM foods will be mandatory as of April 2001. Currently, testing of GM foods is voluntary. Japanese supermarkets are offering both GM foods and unmodified foods, and customers are beginning to show a strong preference for unmodified fruits and vegetables.

Some states in Brazil have banned GM crops entirely, and the Brazilian Institute for the Defence of Consumers, in collaboration with Greenpeace, has filed suit to prevent the importation of GM crops. Brazilian farmers, however, have resorted to smuggling GM soybean seeds into the country because they fear economic harm if they are unable to compete in the global marketplace with other grain-exporting countries.

In Europe, anti-GM food protesters have been especially active. In the last few years Europe has experienced two major foods scares: bovine spongiform encephalopathy (mad cow disease) in Great Britain and dioxin-tainted foods originating from Belgium. These food scares have undermined consumer confidence about the European food supply, and citizens are disinclined to trust government information about GM foods. In response to the public outcry, Europe now requires mandatory food labelling of GM foods in stores, and the European Commission (EC) has established a 1% threshold for contamination of unmodified foods with GM food products.

In the United States, the regulatory process is confused because there are three different government agencies that have jurisdiction over GM foods. To put it very simply, the EPA evaluates GM plants for environmental safety, the USDA evaluates whether the plant is safe to grow, and the FDA evaluates whether the plant is safe to eat. The EPA is responsible for regulating substances such as pesticides or toxins that may cause harm to the environment. GM crops such as B.t. pesticide-laced corn or herbicide-tolerant crops but not foods modified for their nutritional value fall under the purview of the EPA. The USDA is responsible for GM crops that do not fall under the umbrella of the EPA such as drought-tolerant or disease-tolerant crops, crops grown for animal feeds, or whole fruits, vegetables and grains for human consumption. The FDA historically has been concerned with pharmaceuticals, cosmetics and food products and additives, not whole foods. Under current guidelines, a genetically-modified ear of corn sold at a produce stand is not regulated by the FDA because it is a whole food, but a box of cornflakes is regulated because it is a food product. The FDA’s stance is that GM foods are substantially equivalent to unmodified, “natural” foods, and therefore not subject to FDA regulation.

The EPA conducts risk assessment studies on pesticides that could potentially cause harm to human health and the environment, and establishes tolerance and residue levels for pesticides. There are strict limits on the amount of pesticides that may be applied to crops during growth and production, as well as the amount that remains in the food after processing. Growers using pesticides must have a license for each pesticide and must follow the directions on the label to accord with the EPA’s safety standards. Government inspectors may periodically visit farms and conduct investigations to ensure compliance. Violation of government regulations may result in steep fines, loss of license and even jail sentences.

As an example the EPA regulatory approach, consider B.t. corn. The EPA has not established limits on residue levels in B.t corn because the B.t. in the corn is not sprayed as a chemical pesticide but is a gene that is integrated into the genetic material of the corn itself. Growers must have a license from the EPA for B.t corn, and the EPA has issued a letter for the 2000 growing season requiring farmers to plant 20% unmodified corn, and up to 50% unmodified corn in regions where cotton is also cultivated. This planting strategy may help prevent insects from developing resistance to the B.t. pesticides as well as provide a refuge for non-target insects such as Monarch butterflies.

The USDA has many internal divisions that share responsibility for assessing GM foods. Among these divisions are APHIS, the Animal Health and Plant Inspection Service, which conducts field tests and issues permits to grow GM crops, the Agricultural Research Service which performs in-house GM food research, and the Cooperative State Research, Education and Extension Service which oversees the USDA risk assessment program. The USDA is concerned with potential hazards of the plant itself. Does it harbour insect pests? Is it a noxious weed? Will it cause harm to indigenous species if it escapes from farmer’s fields? The USDA has the power to impose quarantines on problem regions to prevent movement of suspected plants, restrict import or export of suspected plants, and can even destroy plants cultivated in violation of USDA regulations. Many GM plants do not require USDA permits from APHIS. A GM plant does not require a permit if it meets these 6 criteria: 1) the plant is not a noxious weed; 2) the genetic material introduced into the GM plant is stably integrated into the plant’s own genome; 3) the function of the introduced gene is known and does not cause plant disease; 4) the GM plant is not toxic to non-target organisms; 5) the introduced gene will not cause the creation of new plant viruses; and 6) the GM plant cannot contain genetic material from animal or human pathogens (see http://www.aphis.usda.gov:80/bbep/bp/7cfr340 ).

The current FDA policy was developed in 1992 (Federal Register Docket No. 92N-0139) and states that agri-biotech companies may voluntarily ask the FDA for a consultation. Companies working to create new GM foods are not required to consult the FDA, nor are they required to follow the FDA’s recommendations after the consultation. Consumer interest groups wish this process to be mandatory, so that all GM food products, whole foods or otherwise, must be approved by the FDA before being released for commercialization. The FDA counters that the agency currently does not have the time, money, or resources to carry out exhaustive health and safety studies of every proposed GM food product. Moreover, the FDA policy as it exists today does not allow for this type of intervention.

Conclusions

There are legitimate health, environmental, and social concerns about the risks of bio-engineered crops. However, it is almost impossible to make blanket statements about GM crops since each GM trait and crop is different. Risks of GM crops must be assessed on a case-by-case basis. This process depends on a strong, credible regulatory system. The GM crops and foods that are currently on the market have been thoroughly evaluated for safety. Although our regulatory system has approved them, many of our trading partners are unconvinced of the safety of GM crops. Likewise, several food processing companies have decided to avoid GM crops. This trend leads to uncertainty in the market place for GM crops.

Producers have identified the following risks: there could be a substantial price spread between GM and non-GM food and feed grain; to capture premiums, non-GM grain may have to be stored on farm, non-GM grain may have to be transported to special collection points; and there may be legal liability if grain sold as non-GM gets contaminated by GM grain. At the present time, if any livestock feed for use in labelling “non-GM fed” meat products. With respect to Kansas, much of the corn and soybeans are used as feed inputs to livestock. Unless consumer concerns change quickly and permanently, it is unlikely that there will be short-run economic incentives for Kansas producers with non-GM corn and soybeans.

However, over time, markets may develop and early adopters may receive economic incentives for non-GM production

Tags: , , , , , , , , , , , , ,

Share it.

Leave a Reply

Related Posts